Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
researchsquare; 2022.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1927944.v1

RESUMEN

Viral and host factors can shape SARS-CoV-2 within-host viral diversity and virus evolution. However, little is known about lineage-specific and vaccination-specific mutations that occur within individuals. Here we analysed deep sequencing data from 2,146 SARS-CoV-2 samples with different viral lineages to describe the patterns of within-host diversity in different conditions, including vaccine-breakthrough infections. Variant of Concern (VOC) Alpha, Delta, and Omicron samples were found to have higher within-host nucleotide diversity while being under weaker purifying selection at full genome level compared to non-VOC SARS-CoV-2 viruses. Breakthrough Delta and Omicron infections in Comirnaty and CoronaVac vaccinated individuals appeared to have higher within-host purifying selection at the full-genome and/or Spike gene levels. Vaccine-induced antibody or T cell responses did not appear to have significant impact on within-host SARS-CoV-2 evolution. Our findings suggest that vaccination does not increase SARS-CoV-2 protein sequence space and may not facilitate emergence of more viral variants.

2.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.12.31.21268591

RESUMEN

New and more transmissible variants of SARS-CoV-2 have arisen multiple times over the course of the pandemic. Rapidly identifying mutations that affect transmission could facilitate outbreak control efforts and highlight new variants that warrant further study. Here we develop an analytical epidemiological model that infers the transmission effects of mutations from genomic surveillance data. Applying our model to SARS-CoV-2 data across many regions, we find multiple mutations that strongly affect the transmission rate, both within and outside the Spike protein. We also quantify the effects of travel and competition between different lineages on the inferred transmission effects of mutations. Importantly, our model detects lineages with increased transmission as they arise. We infer significant transmission advantages for the Alpha and Delta variants within a week of their appearances in regional data, when their regional frequencies were only around 1%. Our model thus enables the rapid identification of variants and mutations that affect transmission from genomic surveillance data.

3.
ssrn; 2020.
Preprint en Inglés | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3720371

RESUMEN

Growing evidence suggests that T cells may play a critical role in combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, COVID-19 vaccines that can elicit a robust T cell response may be particularly important. The design, development and experimental evaluation of such vaccines is aided by an understanding of the landscape of T cell epitopes of SARS-CoV-2, which is largely unknown. Due to the challenges of identifying epitopes experimentally, many studies have proposed the use of in silico methods. Here, we present a review of the in silico methods that have been used for the prediction of SARS-CoV-2 T cell epitopes. These methods employ a diverse set of technical approaches, often rooted in machine learning. A performance comparison is provided based on the ability to identify a specific set of immunogenic epitopes that have been determined experimentally to be targeted by T cells in convalescent COVID-19 patients, shedding light on the relative performance merits of the different approaches adopted by the in silico studies. The review also puts forward perspectives for future research directions.


Asunto(s)
Infecciones por Coronavirus , Síndrome Respiratorio Agudo Grave , COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA